
Conference on Nonlinear Systems & Dynamics IISER Kolkata, 16-18 December 2016

An Initial Condition Dependent Oscillation Control in an Odd and
Even Number Van der Pol Ring.

Vinod V. and Bipin Balaram and M.D. Narayanan and Mihir Sen ∗

This paper addresses the spatial spread of control in a
ring network based on change in initial conditions as well
as the change in system parameters. The initial conditions
needed for studying the periodic dynamics is done by
implementing a generalised shooting strategy [1]. Odd
and even number of oscillators which affects the symmetry
in the network are tested under these initial conditions.
In an environment of self excited oscillators in a ring, a
perturbation does not stay localized to its next immediate
neighbors [2]. The motion of each member in the ring is
idealized as the self excited oscillation of a Van der Pol
oscillator [3]. The governing equation of the model is given
by

ẍi + µ(xi
2 − λ)ẋi + ω2

i xi =

n∑
p=1

σD
2p−1

(ẋi−p − 2ẋi + ẋi+p).

(1)

The R.H.S. of the model indicates the dissipative coupling
force between the ith oscillator and all others in the ring.
Some of the control dynamics based on the initial condition
are discussed in the following results. The implementation
of the generalised shooting strategy in the ring model is
detailed in [4].
Full Control in an Even Number Ring

In an even ring network (n = 4) with all the oscillators
having the same natural frequency, amplitude death occurs
when the oscillators are subjected to an initial condition
[(C, 0), (−C, 0), (C, 0), (−C, 0)], where C = xi(0) is a
positive integer. The time plot starting from a unit value
of C initially forms antiphase clusters among the alternate
oscillators. Later all of them tend to die completely at a
time of approximately 200 s in Fig. 1.

Negative control in an Odd number Ring
If a fifth oscillator is introduced in the ring by giving

an initial condition (0, 0), initially it tends to act as a
‘phantom’ oscillator. In the time plot which is Fig. 2, the
odd oscillator remains idle for a certain period of time and
the remaining oscillators are under amplitude death. After
a certain time of around 230 s, the odd oscillator begins
to oscillate along with others with a common periodicity
thereby attaining synchronization. The time sample at
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Figure 1: Full control based on initial condition.

which it begins to oscillate along with others will be
referred as waking time (tw). The waking time of the odd
oscillator possesses its own characteristics, one being its
dependence on the nonlinearity of oscillators in the ring for
a fixed value of coupling coefficient.

Figure 2: Waking of odd oscillator in the ring having µ =
0.1, σD = 0.1.

Full Control of Oscillators with Frequency Detuning
Consider an even number ring under the initial condition
[(C, 0), (C, 0), (C, 0), (C, 0)] and having a frequency mis-
match given to the first oscillator whose natural frequency
is 80% of the remaining three oscillators. There exists a
region ‘A’ in parameter space (µ, σD) of Fig. 3, where
amplitude death happens in the time plot of all oscillators
in the network.

Localised Control in the Ring
When an even number ring is subjected to the
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Figure 3: Amplitude death in nonidentical oscillators. A=
Region of Amplitude Death, B= Region of No Death, for
∆ω = 0.2.

initial condition [(C, 0), (−C, 0), (C, 0), (−C, 0)] or
[(C, 0), (C, 0), (C, 0), (C, 0)], the detuned oscillator along
with its next immediate neighbors undergoes suppression
in its dynamics. The oscillators which are not in direct
contact with the detuned oscillator will not cause any
change in amplitude, while the adjustment of phase and
frequency occurs in the whole network when one moves
along the axis of the coupling coefficient. All the oscillators
are under suppression except third one (x3) by comparing
the displacement in the phase plane projection in Fig. 4.
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Figure 4: Localised control of x1,x2 and x4.
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