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1 Introduction
We consider the following problem. Given a heterogeneous
(linear) mixture of chaotic signals corrupted with additive
noise, how do we separate the individual signals? This
problem arises in several contexts such as multiplexing of
chaotic neural signals in the brain [1, 2], cryptography and
steganography applications [3]. We briefly survey current
methods of multiplexing of chaotic signals and show
their inability to solve this problem. We then propose a
novel solution using the paradigm of Compressed Sensing.
Our approach can successfully separate a heterogeneous
mixture of (say) 50 chaotic signals randomly chosen from
a known set of 10, 000 signals (5000 logistic and 5000 tent
map signals) in the presence of noise (see Figure 1).

2 Limitations of Existing Methods
Existing techniques to address the aforementioned problem
can be broadly classified into two classes - (i) chaotic
synchronization based methods [4]-[6], and (ii) symbolic
sequence based methods [3, 7]. Both these classes of
methods fail to solve the problem because of the following
limitations. Chaotic synchronization methods work only
for a homogeneous mixture of certain chaotic maps (and
flows) under specific conditions only (for e.g., it fails for
the Bernoulli shift map [6]). Furthermore, these methods
are very sensitive to even small amounts of noise, round off
errors, need a large number of iterates and fail to separate a
large mixture of chaotic signals.

Though symbolic sequence based methods are immune
to many of these defects, they have a serious limitation
which is the difficulty of finite precision implementation
for finding the initial condition from a symbolic sequence,
a prerequisite for these methods to work. They also suffer
from limited noise resistance and have not been tested for
mixtures beyond 25 chaotic signals.

For instance, none of the existing methods can explain
the demultiplexing of chaotic neuronal signals in the pres-
ence of interference from as many as 10, 000 neighboring
neurons and neural noise, which the brain seems to be
carrying out successfully. Recently, we have proposed such
a scheme using Compressed Sensing [8].

∗Nithin Nagaraj is with the Consciousness Studies Programme, School
of Humanities, National Institute of Advanced Studies, Indian Institute
of Science Campus, Bengaluru-560012, email: nithin@nias.iisc.ernet.in.
K. R. Sahasranand is with the Department of Electrical Communica-
tion Engineering, Indian Institute of Science, Bengaluru-560012, email:
sanandkr@ece.iisc.ernet.in

0 100 200 300 400 500
15

20

25

30

35

Discrete Time

M
a

g
n

it
u

d
e

 o
f 

y

0 5 10 15 20 25 30 35
0

5

10

15

20

25

30

35

y
t

y
t+

1

Figure 1: Top: Heterogeneously mixed signal (with addi-
tive noise) y = (y1, . . . , yt, . . . , yM ). Bottom: A plot of
yt+1 vs. yt shows no discernible structure in the mixed
signal, thereby making separation difficult.

3 A Novel Solution
We provide a novel solution to the problem of separating
a heterogeneous (noisy) mixture of a number of chaotic
signals randomly chosen from a large (known) set of signals
using the paradigm of Compressed Sensing.

Compressed Sensing
Compressed Sensing (CS) is a signal detection frame-
work [9] wherein if it is known that the signal being sensed
is sparse, the number of measurements could be consider-
ably reduced. We say a signal x = (x1, x2, . . . , xN ) ∈
RN is k-sparse if the number of nonzero entries in x is
less than or equal to k. The measurement procedure is
linear in nature and hence could be succinctly written as
b = Ax, where A is an M × N sensing matrix and x is
k-sparse. Observe that M corresponds to the number of
measurements and N corresponds to the size of the signal
being sensed.

Now, the problem is to estimate x given A and b. If
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M ≥ N , this is quite elementary. However, CS theory says
that if x is k-sparse, to recover x from b, it suffices to have
number of measurements M ≈ constant · k log N

k [10]
and not as large as N . To recover x, there are many well-
known algorithms which take the optimization approach
(l1 minimization [12]) or greedy approach (like Orthogonal
Matching Pursuit [11]), provided A, the sensing matrix
satisfies a property known as Restricted Isometry Property
(RIP) [13]. For example, when the entries of A are all
drawn independently from a Gaussian distribution, appro-
priately normalized, the matrix satisfies RIP. In [14], it was
shown that a sensing matrix A constructed using chaotic
signals satisfies RIP with overwhelming probability.

Another way to look at the aforementioned sensing
problem is to think of b ∈ RM as a weighted linear
combination of some k (unknown) columns of A (duly
addressing A as the mixing matrix), where the weights
correspond to the nonzero entries of x. Then, solving for
x tells us which columns participated in the mixing. This
quite a useful view is what we will subscribe to in this paper.
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Figure 2: An example of a portion of an original and
reconstructed chaotic signal using our proposed approach.
Similar results were obtained for all 50 chaotic signals.

Proposed method
The multiplexed signal b is obtained by the weighted
linear combination of k (or fewer) signals chosen from a
collection of N chaotic signals (each of length M ) drawn
from logistic and tent maps. We view these N signals as
the columns of the matrix A and the weights as the nonzero
entries of x, which is k-sparse. Thus b = Ax. The signal
b is then transmitted through a channel which adds some
stochastic noise n (with mean 0, variance η) to it. The
received signal now looks like y = b + n = Ax + n.
Now, the problem is one of identifying the columns (chaotic
signals from logistic map and tent map) in the mixing
matrix A which participated in the heterogeneous mixture,
given a noise corrupted version, y. This could be viewed
as solving for x given the sensing matrix A and the (noisy)
received signal y. One of the ways to estimate x in such a
case is to solve the convex program

min ||x||l1 subject to ||Ax− y||l2 ≤ η,

which gives the sparse solution x∗ [12]. The accuracy of
the estimate x∗, however, depends on the variance η of the

stochastic noise, n. This is characterized by [9]

||x− x∗||l2 ≤ C1η + C2.
||x− xK ||l1√

k
,

where C1, C2 are constants and xK is the same as x at the
k leading entries and the rest set to zero. Figure 2 shows
a simulation (with M = 500, N = 10, 000 and k = 50)
where all the mixed chaotic signals are recovered (almost
perfectly) when η = 0.1.

4 Conclusion
The method that we have described could be readily
extended for signals arising out of continuous-time chaotic
dynamical systems as well. Although we demonstrated our
method using two kinds of chaotic signals, a heterogeneous
mixture of chaotic signals from both maps and flows (of
multiple kinds) can be handled by the proposed method
as long as the mixing matrix A satisfies the Restricted
Isometry Property.
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